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Abstract

This paper presents the first-known exact solutions for buckling and vibration of stepped rectangular Mindlin plates
with two opposite edges simply supported and the remaining two edges being either free, simply supported or clamped.
The general Levy type solution method and a domain decomposition technique are employed to develop an analytical
approach to deal with the stepped rectangular Mindlin plates. Exact buckling loads and vibration frequencies are
obtained for two-, three- and four-stepped Mindlin plates with varying step thickness ratios. The influence of the step
length ratios, step thickness ratios and the number of steps on the buckling and vibration behaviour of square and
rectangular Mindlin plates is examined. The presented exact results may serve as benchmark solutions for such plates.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Plates with varying thickness are extensively used in modern structures due to their unique functions.
For example, stepped plates possess a number of attractive features, such as material saving, weight re-
duction, stiffness enhancing, designated strengthening, fundamental vibration frequency increasing, etc.
With the availability of inexpensive and high performance computers, theoretical analysis is frequently
employed to optimize stepped plates in practical engineering designs. In particular, buckling and free
vibration analysis of stepped plates has attracted much attention in the past few decades. A variety of
theoretical approaches have been formulated for this class of problems. These approaches may be applied
to study varying thickness plates where the plate thickness is allowed to vary either as piecewise constant
step functions (e.g. Chopra, 1974; Yuan and Dickinson, 1992; Lam and Amrutharaj, 1995; Guo et al., 1997;
Eisenberger and Alexandrov, 2000; Ju et al., 1995; Cheung et al., 2000), a linear function (e.g. Wittrick and
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Ellen, 1962; Ohga et al., 1995), piecewise linear functions (e.g. Hwang, 1973), or as a non-linear func-
tion (e.g. Pines and Gerard, 1947; Malhorta et al., 1987; Navaneethakrishnan, 1988; Olhoff, 1974; Levy,
1996).

Chopra (1974) treated the free vibration of stepped plates as a composition of uniform domains, and the
thickness was allowed to vary from domain to domain. The overall eigenvalue problem was formulated by
assuming the boundary conditions and continuity conditions at the location of abrupt change of thickness.
His work, however, contains an error in the continuity conditions for bending moment and shear force at
the step, as indicated by Warburton (1975) and Yuan and Dickinson (1992). The Kantorovich extended
method, including an exponential optimization parameter in the formulation, was utilized by Cortinez and
Laura (1990) for analyzing the natural frequencies of stepped rectangular plates. The Rayleigh-Ritz
method in association with a truncated double Fourier expansion, was applied by Bambill et al. (1991) to
obtain the fundamental frequencies of simply supported stepped rectangular plates. However, it is believed
that the assumption of continuity for the deflection function at the locations of abrupt change of thickness
is a drawback of these earlier treatments. Harik et al. (1992) analyzed the vibration problem of rectangular
stepped plates with correct continuity conditions. They modified the analytical strip method to allow step
change in thickness in one direction. Yuan and Dickinson (1992) studied the vibration of simply supported
stepped rectangular plates. They obtained the exact vibration frequencies for simply supported stepped
rectangular plates by using the method proposed by Chopra (1974) with the correct continuity conditions
for bending moment and shear force at the step. Recently, Cheung et al. (2000) have addressed the problem
of excessive continuity by introducing a set of C! continuous longitudinal interpolation functions in the
framework of the finite strip analysis to study buckling of rectangular stepped plates. The C! continuous
functions are constructed by using the relevant beam vibration models with piecewise cubic polynomials.
They have argued that these displacement functions possess both the advantages of fast convergence of
harmonic functions as well as the appropriate order of continuity, and higher accuracy.

There are two important aspects that are worth paying attention in the on-going research on stepped
plates. First, stepped plates in general do not admit analytical solutions. Most results reported are obtained
by using numerical approaches with a few exceptions given by Chopra (1974), Yuan and Dickinson (1992),
Eisenberger and Alexandrov (2000) for simply supported rectangular plates. It is highly important to have
exact benchmark solutions so that numerical methods developed for analyzing non-uniform thickness
plates can be validated on their convergence and accuracy. More recently, Xiang and Wang (2002) have
introduced the Levy solution method to the problem of thin stepped plates having n-step variations in one
direction parallel to the plate edges while the thickness is constant in the other direction. Another important
aspect in treating the stepped plates concerns the theories used to model plates. As the thickness of a plate
increases, it is crucial to include the effect of transverse shear deformation and rotary inertia in the analysis.
Therefore, it is nature to consider the Mindlin first order shear deformable plate theory (Mindlin, 1951) or
other higher-order plate theories for analyzing the buckling and free vibration of stepped plates. A treat-
ment for stepped Mindlin plates was formulated by Ju et al. (1995) using a finite element approach.
However, to our best knowledge, there are no exact solutions available in the literature for buckling and
vibration of stepped Mindlin plates.

The objective of the present work is to fill this gap by providing exact solutions to the buckling and
vibration of stepped rectangular Mindlin plates. By considering Mindlin plates with two opposite edges
simply supported in the direction of the stepped variation, the general Levy type solution method in
connection with a domain decomposition technique is employed to fulfill the objective.

This paper is organized as follows. Theoretical formulations are presented in Section 2. The Mindlin
plate theory is employed and the general Levy type solution method is utilized to develop the analytical
method for stepped Mindlin plates. Section 3 is devoted to results and discussions. Three types of problems,
including buckling, free vibration of plates and vibration of plates subjected to inplane loads, are con-
sidered in the present study. Extensive first known exact buckling factors and frequency parameters are
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documented both for benchmarking new numerical algorithms and for engineering designs. This paper ends
with a conclusion.

2. Theoretical formulation

Consider an isotropic, elastic, stepped rectangular plate of length aL, width L, modulus of elasticity E,
Poisson’s ratio v and shear modulus G = E/[2(1 + v)]. The plate is of constant thicknesses in the y-direction
and n-steps in the x-direction, with thickness #; (i = 1,2, ..., n) for the ith step (see Fig. 1). The two edges of
the plate parallel to the x-axis are assumed to be simply supported. The origin of the coordinate system is
set at the centre of the bottom edge BC of the plate as shown in Fig. 1. The plate may be subjected to either
a uni- or a bi-axial inplane compressive load. The problem at hand is to determine the critical buckling
loads and the vibration frequencies for such an n-stepped rectangular plate.

The Mindlin first order shear deformation plate theory (Mindlin, 1951) is employed in this study. The
plate is assumed to be simply supported on the two edges parallel to the x-axis. We take a typical step in the
plate to derive the Levy type solution. The governing differential equations based on the Mindlin plate
theory (Mindlin, 1951) for the ith step in harmonic vibration with inplane loads can be derived as:
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Gh; 0. — 0 )| — BN == — 9N — + phyo*w' =0 1
* [6x<6x+ x>+6y<6y+ ”)} b ox? 4 6y2+p @ (1)
o (o0 00, (1—v)D;| 0 (00, a0 ow N\ ph L.
D;| — rpy2 — =2 * || - k*Gh 0. Lot =0 2
6x<©x+v6y> 2 oy 6x+6y KG(6x+x)+12wx @)

Simply
Supported Edges
A
A D
™ <] The (n-1)-th
| | // Interface
AN 1 L
- | -—
% |+
¥ M .
> _— X
B C
The 1st and 2nd
Interfaces of Steps Thei-th Step
with thickness h;

Fig. 1. Geometry and coordinate system for a multi-step rectangular Mindlin plate.
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where the sub- and super-script i (= 1,2,...,n) denotes the ith step in the plate, x? is the shear correction
factor, D; = ERi} /[12(1 — v?)] is the flexural rigidity of the ith step, p is the mass density of the plate, w is the
vibration frequency of the plate, w' is the transverse displacement, 0 and 0/ are rotations in the y and x
directions, and f and 7 are tracers that take the values of either 0 or 1 for different inplane load combi-
nations.

The essential and natural boundary conditions for the two simply supported parallel edges (at y = 0 and
y = L) in the ith step are

i

w =0, M =0, =0 (4a—c)
where Myi is the bending moment and is defined by
, o0, o0’
i p. | 2 —x
My—D,<ay+vax> (5)

The general Levy-type solution approach is employed to solve the governing differential equations for
the ith step. The displacement fields can be expressed as

wi(x,) ¢, (x) sin "7
0(x,9) p =4 B sin™ (6)
0,(x,») ¢, (x) cos

where ¢, (x), ¢, (x) and ¢, (x) are unknown functions to be determined. Eq. (6) satisfies the simply sup-

ported boundary conditions on edges at y = 0 and y = L as defined in Eqs. (4a)—(4c).
Substituting Eq. (6) into Egs. (1)—(3), the following differential equation system can be derived:
(W) =HVY (7)
where ' = (¢! (¢)) ¢, (¢) ¢ (gb;)’]T , the prime ’ represents the derivative with respect to x and

P - . . X LY
H' is a 6 x 6 matrix with the following non-zero elements:
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A general solution of Eq. (7) can be obtained as
V= et (18)

where ¢ is a constant column vector that can be determined by the plate boundary conditions of the two
edges parallel to the y-axis and/or the interface conditions between adjacent steps and e is the general
matrix solution of Eq. (7). The detailed procedure in determining Eq. (18) has been given by Xiang et al.
(1996).

Each of the two edges parallel to the y-axis may have the following edge conditions

) ) ) ow'
M =0, M, =0, O - ﬁNal —0, if the edge is free (19a—c)
X
w =0 M =0, 9; =0, if the edge is simply supported (20a—)
w =0, 0; =0, 9; =0, if the edge is clamped (2la—c)

where i takes the value 1 or n, M, M}, and O are bending moment, twist moment and transverse shear force
in the plate, respectively, and are defined by

. 00 o0

Mi:Di<a—;+Va—;> (22)
,. 1—v (00 06,

=0t (5% )
i 2 ow' i

0, = KGh 5+, (24)

Note that the free edge condition in Eq. (19¢) involves the inplane load SN. The effect of this inplane force
term on the buckling capacity of plates was discussed in an earlier paper by Xiang et al. (1996).

To ensure the continuity at the interface of adjacent steps, the essential and natural boundary conditions
for the interface between the ith and the (i + 1)th steps are defined as:

Wi _ WH—I (25)

0 =0 (26)
i i+1

0, =0 (27)

M= M (28)
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In view of Eq. (18), a homogeneous system of equations can be derived by implementing the boundary

conditions of the plate along the two edges parallel to the y-axis (Egs. (19)—(21)) and the interface con-
ditions between two adjacent steps Eqgs. (25)—(30) when assembling the steps to form the whole plate

. ow' .
0, PN == 0" — BN (30)

K{C, b =(0) (31)

The buckling load N (set w = 0) or the vibration frequency w (set N = 0) may be determined when the
determinant of K in Eq. (31) is equal to zero.

3. Results and discussions

The proposed analytical method is applied in this section to obtain exact solutions for buckling and
vibration of stepped rectangular Mindlin plates. Three groups of results are presented in this section,
namely, (1) buckling of stepped Mindlin plates; (2) free vibration of stepped Mindlin plates; and (3) vi-
bration of stepped Mindlin plates subjected to inplane loads.

The critical buckling load N, and the vibration frequency w are expressed in terms of a non-dimensional
buckling factor A = N;L?/(n*D;) and a non-dimensional frequency parameter A = (wL?/n*)\/ph, /Dy, re-
spectively, where 4; and D, are the thickness and the flexural rigidity of the first step, respectively. For
brevity, letters F, S and C are used to denote a free edge, a simply supported edge and a clamped edge,
respectively. Since the Levy plates considered in the paper have the two edges parallel to the x-axis simply
supported, we only need to use two letters to describe the plate boundary conditions on the two edges
parallel to the y-axis. For instance, an SF plate has the edge 4B simply supported and edge DC free (see Fig.
1). The Poisson’s ratio v = 0.3 and the shear correction factor x> = 5/6 are adopted for all cases in the paper.

3.1. Buckling of stepped Mindlin plates

For the buckling analysis of plates, we consider three inplane loading cases, namely, (1) uniaxial inplane
compressive load in the x-direction (f = 1, y = 0); (2) uniaxial inplane compressive load in the y-direction
(p =0, y=1); and (3) equi-biaxial inplane compressive loads (f =1, y = 1).

Table 1 presents the buckling factors A generated by the present analytical approach and from Eisen-
berger and Alexandrov (2000) and Xiang and Wang (2002) for an SS rectangular plate with two even steps
(@ =2, b=0.5in Fig. 2). The plate thickness ratio 4, /L is set to be 0.005 (quite thin) so that the results
obtained from the present analytical method based on the Mindlin plate theory can be compared with the
ones in Eisenberger and Alexandrov (2000) and Xiang and Wang (2002) based on the thin plate theory.
Table 1 shows that the buckling solutions from the proposed analytical approach are in close agreement
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Table 1
Comparison of buckling factors 4= N,L*/(7’D,) for a two-step, SS rectangular plate subjected to uniaxial inplane load
((B,y) =(1,0),a=2.0,b=0.5,v=0.25, h; /L = 0.005)

hy [/ Sources
Present Eisenberger and Alexandrov (2000) Xiang and Wang (2002)

0.4 0.308264 0.8619 0.3083
0.6 1.02444 1.0245 1.0246
0.8 2.34385 2.3442 2.3442
1.0 3.99947 4.0000 4.0000
1.2 4.53154 4.5324 4.5325
1.4 4.66512 4.6663 4.6663
1.6 4.72798 4.7292 4.7292
1.8 4.76394 4.7652 4.7652
2.0 4.78646 4.7877 4.7878
22 4.80137 4.8026 4.8027

o

aL

h, L

Fig. 2. A two-step rectangular Levy plate.

with the results from Eisenberger and Alexandrov (2000) and Xiang and Wang (2002) except for the case
with &, /h; = 0.4. The difference is attributed to the fact that Eisenberger and Alexandrov (2000) obtained
the buckling load factor that corresponds to the third buckling mode while the authors obtained the correct
value for the first buckling mode. Note that when using the present method to analyse Mindlin plates with
small thickness ratios, high precision is required to perform the calculations, as indicated by Xiang et al.
(1996). The comparison study confirms the correctness of the analytical method used in this paper.

Table 2 presents the buckling factors for the three symmetric Levy square plates (SS, FF and CC plates)
with two-uneven steps (see Fig. 2). The step length parameter b varies from 0.3, 0.5 to 0.7. The step
thickness ratios of the plates are set to be 4, /h; = 1.2 and 2.0. Two plate thickness ratios are considered, i.e.
hy/L = 0.01 (thin plates) and 0.1 (thick plates). As expected, we observe that the buckling factors decrease
as the step length parameter b increases for all cases. The rate of decrease is more pronounced for plates
subjected to the uniaxial inplane load in the y-direction (f = 0, y = 1) and for thin plates (4, /L = 0.01). The
buckling factors increase as the step thickness ratio /,/h; changes from 1.2 to 2.0. Again, the rate of in-
crease is more significant for plates subjected to the uniaxial inplane load in the y-direction (f =10,y = 1)
and for thin plates (/L = 0.01). It is evident that the buckling factors decrease as the plate thickness ratio
hy /L increases, due to the influence of the transverse shear deformation in the plates.
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Table 2
Buckling factors 2 = N;L?/(*D;) for SS, FF and CC square Mindlin plates with two uneven steps
(B,7) Gy B SS (/L) FF (h /L) CC (m /L)
0.01 0.1 0.01 0.1 0.01 0.1
(1,0) 1.2 0.3 5.73894 5.31202 2.54112 2.25565 10.1929 8.66030
0.5 4.96157 4.62915 2.32618 2.06951 8.38620 7.25611
0.7 4.50933 4.23342 2.25729 2.01377 7.59656 6.61825
2.0 0.3 10.3908 8.65689 3.55553 3.04752 19.6097 14.3299
0.5 7.73478 6.59061 2.53523 2.23441 13.7249 10.5611
0.7 5.88004 5.22351 2.36079 2.09670 9.82583 8.03052
0,1) 1.2 0.3 5.97715 5.56563 1.38233 1.32841 11.7662 9.29661
0.5 5.19606 4.87277 1.24073 1.19488 9.91323 8.00557
0.7 4.60111 4.33042 1.12765 1.08883 8.55673 7.01656
2.0 0.3 16.4087 14.3564 4.19812 3.77306 33.8744 22.4755
0.5 10.8319 9.53230 2.54567 2.31778 18.6525 13.1935
0.7 7.54677 6.64562 1.76701 1.63940 11.4514 8.79030
(LD 1.2 0.3 2.95239 2.74867 1.25565 1.18527 5.73453 4.87078
0.5 2.55839 2.39859 1.12401 1.06270 4.86501 4.21229
0.7 2.28483 2.14983 1.04958 0.99841 4.39017 3.82521
2.0 0.3 6.66970 5.77447 2.46874 2.14999 13.0149 9.87175
0.5 4.70715 4.10376 1.54255 1.38579 8.72143 6.90426
0.7 3.42855 3.04054 1.24278 1.13932 6.42577 5.25382

Table 3 shows the buckling factors for the three asymmetric Levy square plates (SF, CF and CS plates)
with two-uneven steps. The buckling behaviour for these plates shows similar trends as the ones for the
symmetric Levy square plates.

Fig. 3 presents the normalised buckling modal shapes in the x-direction for thick square plates
(h1/L = 0.1) with two-uneven steps. The step thickness ratio %, /A, is set to be 2.0. As indicated in Fig. 3, the
number of half waves in the y-direction is m = 1 for all cases except for CC plates subjected to uniaxial load
in the y-direction (f = 0, y = 1). The influence of step length parameter, load conditions and boundary
conditions on the buckling modal shapes can be observed in Fig. 3.

The buckling of thick rectangular plates (%, /L = 0.1) with two-, three- and four-even steps is considered
in this study and the exact buckling factors for these plates are presented in Tables 4 and 5. The plate aspect
ratios for the two-, three- and four-even-step plates are set to be a = 2, 3 and 4, respectively.

The step thickness variation for plates in Table 4 is moderate, i.e. #;/h; =1+ (i — 1) x 0.1, where i (=2,
3 and 4) refers to the ith step. We observe that the increase in the number of steps has insignificant effect on
the buckling factors for S, FF, CC and CS plates. It is due to the fact that the buckling behaviour of the
plates is dominated by the first two steps of the plates. This is evident from the buckling modal shapes for
the SS and FF plates shown in Fig. 4. For SF and CF plates, however, the buckling factors increase sig-
nificantly as the number of steps increases, especially when plates are subjected to uniaxial inplane load in
the x-direction (ff = 1, y = 0). The buckling modal shapes for the SF plates are shown in Fig. 4.

The step thickness variation for plates in Table 5 is large, where ;/h; =1+ (i —1) x 0.5and i (= 2,3
and 4) refers to the ith step. It is observed that for all cases, the buckling factors have very small changes as
the number of steps increases. The buckling behaviour of the plates is largely dependent on the behaviour of
the first step of the plates. The interface between the first and the second steps acts as a clamped edge due to
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Table 3
Buckling factors 4 = N;L?/(n*D;) for SF, CF and CS square Mindlin plates with two uneven steps
B, hy /Iy b SF (h /L) CF (/L) CS (/L)
0.01 0.1 0.01 0.1 0.01 0.1
(1,0 1.2 0.3 3.96162 3.42241 4.06621 3.48887 7.73101 6.95682
0.5 3.76688 3.27473 3.94129 3.38668 6.81856 6.17235
0.7 3.45976 2.99624 3.62735 3.10394 5.81707 5.31784
2.0 0.3 10.3339 8.50274 16.3249 12.2071 18.7209 14.0322
0.5 7.71329 6.46078 11.8322 9.16984 12.2933 9.94679
0.7 5.85874 5.05225 8.76927 6.79690 9.01789 7.53237
0,1) 1.2 0.3 2.26032 2.13832 2.65021 2.46170 8.64779 7.65799
0.5 2.08924 1.98366 2.48931 2.31813 7.65443 6.84520
0.7 1.86540 1.77711 2.23296 2.08694 6.68322 6.03144
2.0 0.3 8.52610 7.61282 10.2613 8.79378 25.1480 20.0522
0.5 6.32485 5.76859 7.85241 6.95639 15.9189 13.0324
0.7 4.39306 4.05635 5.50447 4.97696 10.9912 8.55983
(1,1 1.2 0.3 1.73281 1.62035 1.89017 1.73822 4.11470 3.68878
0.5 1.62461 1.52920 1.80704 1.66677 3.62700 3.27903
0.7 1.46520 1.38533 1.64332 1.52051 3.13672 2.86277
2.0 0.3 5.86099 5.22673 7.78923 6.63785 11.2214 8.93874
0.5 4.18856 3.75571 5.78734 5.13002 7.08504 5.94800
0.7 3.00021 2.72025 4.07133 3.65345 5.09024 4.30395
b Uniaxial Load (f= 1, y=0) Uniaxial Load (=0, y=1) Biaxial Load (=1, y=1)
0.3
0.5
0.7

Fig. 3. Normalised buckling modal shapes in the x-direction for two-step thick square Mindlin plates (4, /L = 0.1). The step thickness
ratio i, /hy = 2.0. The number of half waves in the y-direction m = 1 for all cases except for CC plates subjected to uniaxial load in the
y-direction (f =0, y = 1).
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Table 4
Buckling factors 2 = N, L?/(nD;) for thick rectangular Mindlin plates (%, /L = 0.1) having two-, three- and four-even steps
Cases B,y SS FF cc SF CF cs
————— -] (1,0) 4.11437 2.04985 4.96202 2.66856 2.66870 4.71285
E (0,1) 1.72462 1.05327 2.08636 1.31254 1.35750 1.91397
_____ — (1, 1) 1.36687 0.966345 1.60561 1.20687 1.23265 1.50748
Two-even-step plate (hy/h; = 1.1)
————— o (1,0) 4.14349 2.05146 4.84721 3.40626 3.40634 4.83816
E : 0,1) 1.52322 1.08377 1.64247 1.44748 1.49862 1.61503
_____ R (1,1) 132560 0968617  1.43472 1.31896 1.40517 1.42441
Three-even-step plate (hy/h; = 1.1,
h3y/hy =1.2)
————— EEEEEEE E EE (1,0) 4.14372 2.05146 4.84025 4.14361 4.25678 4.84021
E : : (0,1) 1.49759 1.08560 1.57782 1.49188 1.56380 1.57440
_____ [ S pap——— (1,1) 1.32364 0.968653 1.41976 1.32351 1.41888 1.41928

Four-even-step plate (hy/h = 1.1,
h}/hl = 12, h4/l’l1 = 13)

The plate aspect ratio is set to be @ = 2, 3 and 4 for the two-, three- and four-step plates, respectively.

Table 5
Buckling factors 2 = N, L?/(nD;) for thick rectangular Mindlin plates (%, /L = 0.1) having two-, three- and four-even steps
Cases By  SS FF cc SF CF cs
————— EEEELES (1,0) 4.36305 2.06886 5.65752 4.36181 5.64081 5.64399
! (0,1) 2.48421 1.24322 3.05614 2.31082 2.59967 2.93240
_____ _E______ (1, 1) 1.78076 1.01034 2.19611 1.76990 2.12950 2.15979
Two-even-step plate (h,/h; = 1.5)
————— Bl it (1,0) 4.36352 2.06905 5.64644 4.36351 5.64639 5.64642
5 : (0,1)  2.44800 1.24962 2.86240 2.44573 2.85270 2.85816
_____ [ S (1,1) 1.78198 1.01072 2.16145 1.78192 2.16093 2.16109
Three-even-step plate (hy/h; = 1.5,
hy/hy = 2.0)
————— B S (1,0) 4.36352 2.06905 5.64643 4.36352 5.64643 5.64643
E : 0,1) 2.44751 1.24967 2.85696 2.44749 2.85685 2.85690
_____ [ S (1,1) 1.78199 1.01072 2.16112 1.78199 2.16112 2.16112

Four-even-step plate (hy/h = 1.5,
hs/hy = 2.0, hy/hy = 2.5)

The plate aspect ratio is set to be a = 2, 3 and 4 for the two-, three- and four-step plates, respectively.

the relatively large stiffness of the second step. It is noted that the boundary conditions at the right edge of

the plates have limited effect on the buckling factors of the plates.
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Cases Uniaxial Load (=1, y=0) Uniaxial Load (=0, y=1) Biaxial Load (=1, y=1)
/_\TwiitipiPlate /—%-Step Plate /__wep Plate
Three-Step Plate Three-Step Plate Three-Step Plate
SS Plate /\—_—_—, — e ——— —_— e ———————
Four-Step Plate
o~ P FourStep Plate Four-Step Plate
Two-Step Plate | . Two-Step Plate Two-Step Plate
— e ———
Three-Step Plate Three-Step Plate Three-Step Plate
FF Plate — ———
~
Four-Step Plate —— Four-Step Plate ~——— Four-Step Plate
~
Two-Step Plate Two-Step Plate Two-Step Plate
_——_—————’
Three-Step Plate Three-Step Plate Three-Step Plate
SF Plate —
L Four-Step Plate /__\Four-SﬂPlai. Four-Step Plate

Fig. 4. Normalised buckling modal shapes in the x-direction for multi-step thick rectangular Mindlin plates (;/L = 0.1). The step
thickness ratios are hy/hy = 1.1, h3/hy = 1.2, hy/h, = 1.3. The number of half waves in the y-direction m = 1 for all cases.

3.2. Free vibration of stepped Mindlin plates

The free vibration of thick square and rectangular plates (7;/L = 0.1) of multiple steps is studied.
Table 6 presents frequency parameters obtained using the present analytical method and from Chopra
(1974) and Yuan and Dickinson (1992) for a one-step SS square plate. The plate thickness ratio 4, /L is

Table 6
Comparison of frequency parameters A = (wL?/n*)+/phi /D for a one-step SS square plate (@ = 1, &; /L = 0.005)
b hy /Iy Sources Mode number
1 2 3 4 5 6
0.25 0.5 Present 1.29237 2.87075 2.89858 491918 5.41389 5.67875
Yuan and Dickinson 1.29333 2.87183 2.89981 4.92249 4.41555 5.67965
(1992)
0.8 Present 1.70367 4.18625 4.19615 6.76425 8.24811 8.47926
Yuan and Dickinson 1.70392 4.18715 4.19685 6.76611 8.25094 8.48212
(1992)
0.75 0.5 Present 1.62893 4.04723 4.34043 6.86416 8.57067 8.70775
Chopra (1974) 1.744 3.902 4.149 6.3875
Yuan and Dickinson 1.62903 4.04892 4.34142 6.86923 8.57562 8.71333
(1992)
0.8 Present 1.88915 4.68884 4.78228 7.55768 9.39662 9.62323

Yuan and Dickinson 1.88936  4.68981 478334 756023  9.40069  9.62732
(1992)
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taken to be 0.005 (quite thin) so that the results obtained from the present analytical method based on the
Mindlin plate theory can be compared with the ones by Chopra (1974) and Yuan and Dickinson (1992)
based on the thin plate theory. Table 6 shows that the vibration solutions from the proposed analytical
approach are in close agreement with the results from Yuan and Dickinson (1992), but are quite different
from the ones by Chopra (1974). It is because the continuity conditions used in Chopra (1974) contain an

error in the bending moment and shear force at the step (Warburton, 1975).

Table 7

Frequency parameters A = (wl?/n*)\/ph /D, for two-step thick square plates (h;/L = 0.1, a = 1)
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Cases b hy/hy Mode sequence
1 2 3 4 5 6
SS plate 0.3 1.2 2.16821 5.09925 5.16053 7.80544 9.45515 9.54106
2.0 2.88021 6.61845 6.86149 10.0353 11.9260 11.9822
0.5 1.2 2.09923 4.97480 4.99029 7.59152 9.16476 9.16799
2.0 2.66931 6.08292 6.10788 8.96241 10.3367 10.5534
0.7 1.2 2.03897 4.79434 4.81197 7.36864 8.84566 8.99825
2.0 2.46138 5.18139 5.32766 8.27243 9.29564 9.78381
FF plate 0.3 1.2 1.08416 1.77060 3.87291 4.05850 4.82925 6.94544
2.0 1.62332 2.59380 5.00928 5.04783 6.66252 8.74244
0.5 1.2 1.04881 1.70530 3.69111 3.92461 4.74829 6.76250
2.0 1.41550 2.22666 431018 4.38423 6.32847 8.23391
0.7 1.2 1.01595 1.64382 3.55752 3.83455 4.64046 6.58684
2.0 1.23780 1.99850 4.01290 4.03302 5.83686 7.20974
CC plate 0.3 1.2 2.97322 5.54320 6.53154 8.73154 9.74562 11.1061
2.0 3.71756 7.25137 7.92843 10.8642 12.3024 13.4710
0.5 1.2 2.91042 5.35570 6.41933 8.50642 9.36659 10.8003
2.0 3.56140 6.57085 7.53462 9.80141 10.6934 11.9009
0.7 1.2 2.87251 5.17106 6.23033 8.26739 9.02241 10.6139
2.0 3.51296 5.75863 6.77794 9.12469 9.50895 11.2131
SF plate 0.3 1.2 1.33055 2.96662 4.47052 5.99403 6.22140 8.99964
2.0 1.97237 3.86272 6.33455 7.86096 8.11507 11.4702
0.5 1.2 1.29686 2.87350 437738 5.83582 6.09594 8.79312
2.0 1.84078 3.64346 5.83563 7.09132 7.29871 10.2274
0.7 1.2 1.25405 2.76959 423219 5.67076 5.82171 8.52389
2.0 1.69084 3.20492 5.15055 6.17286 6.70715 9.26612
CF plate 0.3 1.2 1.42387 3.42249 4.51931 6.28844 6.97244 9.03284
2.0 2.08749 4.35059 6.43445 8.18603 8.79152 11.9700
0.5 1.2 1.39283 3.33184 4.43654 6.13135 6.86561 8.86318
2.0 1.95388 4.10568 6.03368 7.66536 8.10880 10.6384
0.7 1.2 1.34807 3.21561 4.29196 5.94871 6.56749 8.57633
2.0 1.80127 3.70345 5.37044 6.86721 6.95441 9.45320
CS plate 0.3 1.2 2.52272 5.36143 5.81199 8.27266 9.67450 10.3003
2.0 3.29206 7.14078 7.26431 10.5202 12.2794 12.8983
0.5 1.2 2.46090 5.18374 5.70450 8.06984 9.31047 10.0393
2.0 3.04378 6.47174 7.02677 9.54684 10.6845 11.3174
0.7 1.2 2.39439 4.99173 5.52218 7.82108 8.96140 9.84228
2.0 2.86712 5.64614 5.91064 8.70972 9.49299 10.7363
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Table 7 presents the first six frequency parameters for the six Levy square plates with two-uneven steps.
The step length parameter b varies from 0.3, 0.5 to 0.7 and the step thickness ratio 4, /A is set to be 1.2 and
2.0. We observe that the frequency parameters decrease with increasing step length parameter b. It is due to

Table 8
Frequency parameters A = (wL?/n?)+/ph /D, for thick rectangular Mindlin plates (#,/L = 0.1) having two-, three- and four-even
steps

Cases Mode se- SS FF cc SF CF cS
quence

_____ === 1 1.27942 1.00775 1.40628 1.09754 1.11294 1.34137
! 2 2.02032 1.21205 2.36807 1.52021 1.61641 2.18771
_____ _E______ 3 3.20745 1.79614 3.74954 2.38807 2.58340 3.47450
4 4.10821 2.76688 4.16078 3.66437 3.94840 4.14679
Two-even-step plate (]12/]11 = 1,]) 5 4.79993 3.79006 4.97444 4.00881 4.02386 4.89387
6 4.81058 4.11368 5.48790 4.34346 4.39230 5.14049
————— T — Ao 1 1.18445 1.02578 1.22566 1.13350 1.14443 1.21197
E : 2 1.53992 1.18737 1.66618 1.31553 1.35321 1.60516
_____ I S 3 2.10553 1.45791 2.33324 1.73773 1.81922 2.22106
4 2.87801 1.94178 3.19891 2.35923 2.48774 3.03977
Three-even-step plate (h:/h = 1.1, 5 3.84027 2.61324 4.10621 3.17627 3.34778 4.04191
hy/hy = 1.2) 6 4.07642 3.46989 4.23744 4.07351 4.10116 4.10552
_____ EEEEEE S S E R EEE 1 1.16651 1.02788 1.18944 1.15831 1.17399 1.18676
' ! ! 2 1.39625 1.21898 1.45310 1.28739 1.30424 1.43091
_____ _E______i______i_____ 3 1.72969 1.36078 1.84237 1.51968 1.56309 1.79020
4 2.18838 1.64878 2.35951 1.89550 1.96562 2.27869
Four-even-step plate (hy/h; = 1.1, 5 2.76928 2.05854 2.99480 2.38579 2.48332 2.88594
hy/hy = 1.2, hy/hy = 1.3) 6 3.46124 2.57860 3.73492 2.99339 3.11628 3.60263

The plate aspect ratio is set to be a = 2, 3 and 4 for the two-, three- and four-step plates, respectively.

Cases Mode 1 Mode 2 Mode 3 Mode 4

Two-Even-
Step Plate
(a=2,
m/L=0.1,
hg”]] = 11)

Three-
Even-Step
Plate
(a=3,
h/L=0.1,
.".'3.";?] - 11,
h'y’h] = ]2)

Fig. 5. Modal shapes and contours for the first four modes of two- and three-even-step SS rectangular plates.
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the decrease of the overall stiffness of the plate as the step length parameter 4 increases. On the other hand,
the frequency parameters increase as the step thickness ratio 4,/h; changes from 1.2 to 2.0.

Table 8 presents the first six frequency parameters for thick rectangular plates with two-, three- and four-
even steps. The step thickness variation for plates is #;/h; = 1 4 (i — 1) x 0.1, where i (= 2, 3 and 4) refers
to the ith step. The plate aspect ratios for the two-, three- and four-even-step plates are taken as a =2, 3
and 4, respectively. Unlike the buckling counterpart, where the increase of the number of steps has limited
effect on the buckling factors, the frequency parameters change significantly as the number of steps in-
creases. The typical vibration modal shapes and contours for the first four modes of the SS and SF rect-
angular plates are presented in Figs. 5 and 6. We can clearly observe the effect of steps on the modal shapes
of these plates.

3.3. Vibration of stepped Mindlin plates subjected to inplane loads

The proposed analytical method can be used to study the vibration of Mindlin plates subjected to in-
plane loads. We have chosen the SS and FF thick rectangular plates (4,/L =0.1) of two-even steps

Cases Mode 1 Mode 2 Mode 3 Mode 4

Two-Even-
Step Plate
(a=2,
m/L=0.1,
f!gff?j = l.l)

Three-
Even-Step
Plate
(a=3,
m/L=0.1,
n'lg/h] ol 1.]_,
hylhy =1.2)

Fig. 6. Modal shapes and contours for the first four modes of two- and three-even-step SF rectangular plates.

Table 9
Frequency parameters A = (wL*/n?)+/ph,/D; for SS and FF thick rectangular Mindlin plates (k,/L = 0.1) having two-even steps
Case Mode SS (N/Ne) FF (N/Ng)

sequence

-0.9 -0.5 0.5 0.9 -0.9 -0.5 0.5 0.9

1 1.58694 1.45882 1.06152 0.623406 1.01845 1.01551  0.968869 0.595461
2 2.75113 2.45354  1.46477 0.933386 1.39835 1.32104 1.08179 0.973939
3 4.22193 3.82348  2.43790 1.57291 2.27423 2.08030 1.42549 1.08352
4
5

425172 4.17267 3.92716  3.05541 3.46783  3.18084  2.25355 1.73172
Two-even-step plate 5.15168  5.00277 4.03867  3.97644 3.81302  3.80417 3.55279  3.01205
(ha/hy = 1.1) 6 6.06134  5.53649 4.61130  4.44673 416736  4.14393  3.77044  3.74752

The plate aspect ratio is set to be @ = 2 and the plate is subjected to uniaxial inplane load in the x-direction (f = 1, y = 0).
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(hy/hy = 1.1) to demonstrate the application of the method. The plates are subjected to uniaxial inplane
load in the x-direction (ff = 1, y = 0). The inplane load ratio N /N, where N, is the critical buckling load
and may be obtained from Table 4, varies from —0.9, —0.5, 0.5 to 0.9. The negative value of N/N,, denotes
that the inplane load N is a tensile force. The frequency parameters for the two plates are presented in Table
9. We observe that the frequency parameters for the plates decrease as the inplane load ratio N/N,, varies
from —0.9 to 0.9.

4. Conclusions

This paper presents an analytical approach for studying the buckling and vibration behaviour of rect-
angular Mindlin plates with multiple steps. The Levy solution method is employed in connection with the
domain decomposition technique that is used to cater for the step variation in the plates. Presented in the
paper are the first-known exact solutions for buckling and vibration of stepped rectangular Mindlin plates
with two opposite edges simply supported and the remaining two edges being either free, simply supported
or clamped. The influence of the step length ratios, step thickness ratios and the number of steps on the
buckling and vibration behaviour of square and rectangular Mindlin plates is investigated. The authors
believe that the presented exact solutions for buckling and vibration of the stepped Mindlin plates are very
valuable as they may serve as benchmark results for future researches in this area.
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